\qquad
\qquad

EQUATIONS are always given to you. The first unit uses these ones:
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad \sin \theta=\frac{\text { opposite }}{\text { hypotenuse }} \quad \cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }} \quad \tan \theta=\frac{\text { opposite }}{\text { adjacent }} \quad a^{2}+b^{2}=c^{2}$

TARGET \#1- I UNDERSTAND AND CAN USE SCIENTIFIC NOTATION.

Put the following numbers in scientific notation.

1. 7,542
2. 0.00800 \qquad
3. 100,000 \qquad

Expand the following numbers.
4. $\quad 7.4 \times 10^{-3}$
5. 1.0248×10^{-2} \qquad
6. $\quad 6.123 \times 10^{3}$ \qquad

TARGET \#2- UNDERSTANDING THE METRIC SYSTEM AND CONVERSIONS

Conversions you will need to have memorized by the first physics quiz.
LENGTH
$1 \mathrm{~km}=$ \qquad m
$1 \mathrm{~m}=$ \qquad cm

MASS

$1 \mathrm{~kg}=$ \qquad g

VOLUME
$1 \mathrm{~L}=$ \qquad mL

1 inch = \qquad cm
$1 \mathrm{~kg}=$ \qquad lbs.
1 mile $=$ \qquad m km

Perform the following conversions. Please show your work...even if you don't need to!
7. $10,200 \mathrm{~m}=$ \qquad miles
8. $4.21 \times 10^{-3} \mathrm{~m}=$ \qquad cm
9. $46 \mathrm{~kg}=$ \qquad lbs
10. $23 \mathrm{~cm}=$ \qquad ft
11. 40.1 miles $=$ \qquad km
12. 43.0 feet $=$ \qquad meters ($1 \mathrm{in}=2.54 \mathrm{~cm}$) (This has multiple steps...there are not 3 ft in a m)

TARGET \#3- I CAN SOLVE FOR X AND FIND UNITS USING ALGEBRA.
Solve the following equations for \mathbf{x}.
13. $4 x+3=7$
14. $\frac{2 x}{5}=\frac{3}{7}$
15. $\frac{5 x}{3}=20$
16. $\frac{1}{2}+\underset{4}{\frac{1}{4}}=\frac{1}{x}$
\qquad
\qquad

ALGEBRA OF UNITS:

17. In one physics equation we will multiply acceleration (meters $/ \mathrm{sec}^{2}$) by time (sec). If you MULTIPLY those units, what unit will you end up with? (units work just like numbers...they can cancel)
18. In another physics equation we will divide velocity ($\mathrm{m} / \mathrm{sec}$) by time (sec). If you DIVIDE those units, what unit will you end up with?
19. 20 meters $/ \mathrm{sec}=\frac{\mathrm{x}}{5 \mathrm{sec}} \quad$ *The answer to \#19 is \qquad and the units are \qquad

TARGET \#4 -I UNDERSTAND HOW TO USE AND READ A GRAPH.

20. What does it mean when two variables are:
a. related directly? \qquad
b. related indirectly or inversely? \qquad
21. Use the graph to answer the following questions:
a. What is the slope of line \#1? \qquad Speed (m/s) ${ }^{10}$
b. After 6 sec , how fast are you traveling? \qquad

c. Are you moving faster at 3 sec or 7 sec ? \qquad 5
12
d. Find the area under the graph. \qquad Time (sec)
(Do this by breaking it into shapes: a triangle and a rectangle work great), find the area of each shape ($1 / 2 \mathrm{~B} \times \mathrm{H}$ and $\mathrm{L} \times \mathrm{W}$), and then add them together)

The total area under the graph= \qquad

TARGET \#5- I UNDERSTAND BASIC TRIGONOMETRY.

***Make sure your calculator is in degree mode in physics!
22. Use the triangle below to answer the questions.
a. Find the length of side b. \qquad

b. Find angle A in degrees. \qquad
b

$$
\text { c. Use the equation to solve for } B \text { in degrees: } \frac{\operatorname{Sin} 34.06^{\circ}}{7}=\frac{\operatorname{Sin} B}{10.4}
$$

